Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros

Tópicos
Tipo del documento
Intervalo de año
1.
Emerg Microbes Infect ; 12(1): e2164219, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2288032

RESUMEN

ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Antivirales/uso terapéutico , Proteínas de la Nucleocápside , Inmunidad Innata , Desarrollo de Vacunas
2.
Emerg Microbes Infect ; 12(1): 2195019, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2286187

RESUMEN

The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organs dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Citocinas , Inmunidad Innata , Células Dendríticas
3.
Pathogens ; 11(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2066313

RESUMEN

Vaccines are one of the most successful medical inventions to enable the eradication or control of common and fatal diseases. Environmental exposure of hosts, including helminth infections, plays an important role in immune responses to vaccines. Given that helminth infections are among the most common infectious diseases in the world, evaluating vaccine efficiency in helminth-infected populations may provide critical information for selecting optimal vaccination programs. Here, we reviewed the effects of helminth infections on vaccination and its underlying immunological mechanisms, based on findings from human studies and animal models. Moreover, the potential influence of helminth infections on SARS-CoV-2 vaccine was also discussed. Based on these findings, there is an urgent need for anthelmintic treatments to eliminate helminth suppressive impacts on vaccination effectiveness during implementing mass vaccination in parasite endemic areas.

4.
Front Immunol ; 13: 988536, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2039681

RESUMEN

B cells secrete antibodies and mediate the humoral immune response, making them extremely important in protective immunity against SARS-CoV-2, which caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we summarize the positive function and pathological response of B cells in SARS-CoV-2 infection and re-infection. Then, we structure the immunity responses that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B cells during vaccination including the effectiveness of antibodies and memory B cells, viral evolution mechanisms, and future vaccine development. This review might help medical workers and researchers to have a better understanding of the interaction between B cells and SARS-CoV-2 and broaden their vision for future investigations.


Asunto(s)
COVID-19 , Vacunas Virales , COVID-19/prevención & control , Humanos , Recuento de Linfocitos , SARS-CoV-2 , Vacunación
5.
Zoonoses ; 2(1), 2022.
Artículo en Inglés | CAB Abstracts | ID: covidwho-2025743

RESUMEN

Traditional face-to-face teaching in medical schools has been suspended during the global COVID-19 pandemic, and remote online learning has consequently been implemented as an emergency measure. This study aims to share our experiences in exploring online teaching of human parasitology and to discuss the possible advantages, challenges and perspectives that we observed during Wuhan's lockdown due to the pandemic. The application of online education is likely to be an indispensable component of post-COVID-19 interactive online parasitology courses. Our experience might provide an example for the future development of interactive online medical courses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA